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Abstract: Anxiety disorders affect over 300 million people worldwide, highlighting the urgent need
for efficient drug discovery. Current treatments target neurotransmitter transporters, but traditional.
development is slow and costly. We propose a fully connected neural network framework that
integrates molecular descriptors from small molecules (via Mordred) with structural features of
transporters predicted by AlphaFold. This multimodal representation enables accurate prediction of
drug-transporter binding affinity. Experiments show that our model outperforms. classical machine
learning baselines and that combining ligand and protein features yields the best results. The
framework provides a scalable tool for screening candidate anxiolytic drugs potentially accelerating
discovery and reducing trial-and-error costs.

1. Introduction

Anxiety and diminished self-confidence are increasingly recognized as serious threats to.
individual well-being and global public health. According to the World Health Organization,.
approximately 301 million people worldwide suffer from anxiety disorders, representing about 4%
of the global population [1]. Such conditions not only impair daily functioning, but also increase risks
of comorbid psychiatric illnesses and reduced quality of life.

Neurotransmitters are chemical messengers that mediate communication between neurons in the
central nervous system. After being released into the synaptic cleft, neurotransmitters bind to post-
synaptic receptors, and their signaling is terminated primarily by reuptake through neurotransmitter
transporters [2]. These transporter proteins tightly regulate neurotransmitter concentration and
duration of action. Current anxiolytic drugs often target transporter activity, either by inhibiting
reuptake to increase neurotransmitter levels in the synaptic cleft or by modulating transporter function
to rebalance neurotransmission. Classic examples include selective serotonin reuptake inhibitors
(SsRIs) such as fluoxetine and sertraline, and serotonin-norepinephrine reuptake inhibitors (SNRIs)
such as venlafaxine and duloxetine [3].

With the rapid advancement of deep learning, artificial intelligence (AI) has made groundbreaking
contributions in the life sciences. In 2024,the Nobel Prize in Chemistry was awarded to the developers
of AlphaFold, a deep learning model that revolutionized protein structure prediction, underscoring
the transformative role of Al in computational biology [4, 5]. These breakthroughs have opened new
avenues for drug discovery, particularly in understanding protein-ligand interactions.

In parallel, quantitative structure-activity relationship (QSAR) modeling has long served as a
computational strategy for correlating molecular structure with biological activity [6]. Integrating
deep learning with QSAR allows for large-scale screening of small molecules with predicted high
affinity for biological targets, such as neurotransmitter transporters. In the context of developing
anxiolytic and confidence-enhancing drugs, Al-driven approaches could greatly accelerate the
identification of candidate compounds and expand therapeutic options for patients.

Previous research on transporter-targeted drug discovery has provided valuable insights, but
existing methods face two major limitations: (1) insuficient generalizability, as most models are
designed for individual transporters and do not generalize across protein families; and (2) over-
reliance on molecular descriptors alone, neglecting essential protein features such as three
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dimensional structure and physicochemical properties, which are critical for accurate affinity
prediction [7].

In this study, we propose an integrated computational framework that combines moleculan
descriptors of small molecules with structural features of neurotransmitter transporters, as illustrated
in Fig. 1. Candidate molecules were represented in SMILES format and processed using the Mordred
library to extract geometric, topological, and physicochemical descriptors. [8]. Protein structures of
anxiety-related neurotransmitter transporters (including serotonin and norepinephrine transporters)
were predicted using AlphaFold [4]. These molecular and protein features were fused in a fully
connected neural network to predict binding affinities. We divided the dataset into training (80%) and
external testing (20%), applied five-fold crossvalidation on the training set, and evaluated
performance using multiple predictive metrics. Our results demonstrate that incorporating protein
features significantly improves predictior accuracy, offering a scalable approach for screening
anxiolytic drug candidates.

The main contributions of this work can be summarized as follows:

» We propose an integrative framework that combines small-molecule descriptors with protein
structural features predicted by AlphaFold, enabling a more comprehensive representation of ligand-
transporter interactions.

» Unlike previous QSAR models that only consider molecular descriptors, our method explicitly
incorporates the spatial and physicochemical characteristics of neurotransmitter transporters, thus
improving affinity prediction accuracy and model generalization.

» We systematically evaluate our model across multiple neurotransmitter transporters related to
anxiety regulation (e.g., serotonin and norepinephrine transporters), using fivefold cross-validation
and external testing to ensure robustness.

» Our approach provides a scalable computational tool for accelerating anxiolytic drug discovery,
offering a potential strategy to reduce the trial-and-error process and multitarget side effects in current
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Figure 1 Overall workflow of the proposed framework for transporter-drug interaction analysis.

2. Dataset
2.1. Data sources

We compiled ligand-transporter binding data from four open resources: BindingDB
ChEMBL,PubChem and ZINC [9, 10, 11,12]. We focused on human neurotransmitter transporters
strongly implicated in mood and anxiety regulation, such as the serotonin transporter
(SLC6A4),norepinephrine  transporter (SLC6A2),dopamine transporter (SLC6A3),vesicular
monoamine transporter (SLC18A2), GABA transporter (SLC6A1) and glycine transporter (SLC6A9).
UniProt was used to map target identifiers and sequences [13]. Table 1 summarizes the transporters
included in this study.

2.2. Data collection and curation

Data were retrieved programmatically via API and bulk downloads. For transporters we retained
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only records that were clearly mapped to human targets (UniProt mapping) and that contained direct
binding or inhibition measurements (Ki, Kd, IC50, EC50 or similar). For small molecules, canonical
SMILES served as the primary representation. Additional smal molecules were randomly sampled
from ZINC to balance the dataset and generate negative examples [12].

All molecule structures were standardized using RDKit [14] following ChEMBL’s curation
guidelines [15]. Standardization included salt/solvent removal, charge normalization, and canonical
SMILES generation. Records were filtered to retain only numeric afinity values and duplicate ligand-
target pairs were aggregated by taking the median of converted affinities. Duplicates and
stereochemical inconsistencies were removed. This curation strategy aligns with. best practices
recommended by ChREMBL and BindingDB.

2.3. Label processing

Afinity measurements were unified on a nanomolar (nM) scale. When assay parameters permitted,
IC50 values were converted to estimated. K iusing the Cheng-Prusoff relation [16]. Both raw affinity
values and log-transformed labels (pAffinity = -log10 (Affinity in M)) were stored for modeling. This
dual labeling facilitated both regression and classification tasks.

2.4. Molecular descriptor extraction

Molecular features were extracted from canonical SMILES. Two-dimensional descriptors were
derived directly from the SMILES strings, covering constitutional, topological, and fingerprint-like
properties. For three-dimensional descriptors, low-energy conformers were generated using RDKit’s
UFF/MMFF force fields, followed by Mordred descriptor computation [17]. To ensure feature
stability, descriptors with over 30 % missing values or near-zero variance were removed, and
remaining missing entries were imputed with the median. Highly correlated descriptors (Pearson r >
0.95) were filtered to reduce collinearity. Finally, features were standardized (z-score scaling) using
scikit-learn. Table 1 summarizes the descriptor categories.

2.5. Protein structural and sequence features

Protein sequences were obtained from UniProt [13], and when experimental structures were
unavailable, AlphaFold predictions were used [18]. From sequences, we extracted amino acid
composition, molecular weight, isoelectric point, and other physicochemical summaries. Structural
features included secondary-structure composition (via DSsP [18]), solvent-accessible surface area
and residue exposure statistics (via FreeSASA [19]), radius of gyration, and contact-map summaries.
Known functional motifs and transmembrane helix counts from UniProt annotations were also
included. These features ensured that both sequence-level and structure-derived properties were
incorporated into the model (Table 2).

Table 1 List of neurotransmitter transporters studied, with gene names and UniProt identifiers.

Transporter Gene UniProt ID | Main function
Serotonin transporter SLC6A4 P31645 Uptake of serotonin (5-HT)
Norepinephrine transporter SLC6A2 P23975 Uptake of norepinephrine
Dopamine transporter SLC6A3 Q01959 Uptake of dopamine
Vesicular monoamine transporter 2 SLC18A2 | Q05940 Storage of monoamines in vesicles
GABA transporter 1 SLC6A1 P30531 Uptake of GABA
Glycine transporter 1 SLC6A9 P48067 Uptake of glycine

Table 2: Descriptor categories extracted for ligands and transporters.
Category Description
Molecular 2D descriptors Constitutional, topological, fingerprint counts
Molecular 3D descriptors Geometrical, charge-related, conformer-derived features
Protein sequence features Amino acid composition, molecular weight, pl
Protein structural features Secondary structure fractions, SASA, radius of gyration
Contact-map summaries Mean/variance of pairwise residue distances
Functional annotations Motifs, TM helices from UniProt

483



3. Methods

In this work, we designed a fully connected neural network (FCNN) to predict the binding affinity
between small molecules and neurotransmitter transporters. The model integrates. molecular
descriptors extracted from ligands and structural features derived from protein sequences, producing

a unified representation for regression-based affinity prediction, as illustrated in Fig. 2.
Bias
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Figure 2 Schematic architecture of the fully connected neural network(FCNN).The input consists of
concatenated molecular descriptors and protein structural features, which are processed by multiple
hidden layers to produce a continuous affinity prediction.

Let X0 € R% denote the molecular feature vector obtained from Mordred descriptors, where
dp, 1s the number of selected ligand descriptors. Similarly, let X,o¢ € R% denote the protein feature
vector extracted from sequence and structural analysis, where d,, is the number of protein features.
The final input vector is formed by concatenation:

X = [xmol I Xprot] € Rém*%, (D

The FCNN consists of L hidden layers.For each hidden layer [ € {1,2, ..., L}, the transformation
is defined as

h® = (WORCD 4 p®), )
where h(® = x, WO € R4*4~1 and b® € R¥ are the learnable weights and biases of the [ -th

layer, and o (-) is the non-linear activation function. In our implementation, the rectified linear unit
(ReLU) was employed:

o(z) = max(0, 2). 3)

Dropout layers were applied between hidden layers to reduce overfitting, and batch normalization
was used to stabilize training. The final prediction is produced by a linear projection from the last
hidden representation

5; — W(L+1)h(L) + b(L+1), (4)

where J € R corresponds to the predicted binding affinity
The ground-truth label y is the experimentally measured binding affinity, either in nanomolar (nM)
scale or transformed into the logarithmic form

pAffinity = —log,,(Affinity in M). (5)

The network is trained to minimize the mean squared error (MSE) between the predicted affinities
¥; and the true values y;

1 ~
Lysg = ;Z?’:ﬂyl’ - Yi)z' (6)

where N is the number of training samples.This loss encourages the model to produce predictions
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close to the experimental affinities, while the pAf finity transformation provides a numerically stable
scale for regression

4. Experiments
4.1. Implementation Details

All models were implemented in Python using PyTorch (version 2.0).Molecular descriptors were
computed with Mordred, and protein features were extracted from UniProt sequences and.
AlphaFold-predicted structures. The input vectors were standardized with zero mean and unit.
variance before feeding into the network. The fully connected neural network consisted of three
hidden layers with 512,256,and 128 units,each followed by ReLU activation and dropout
(p = 0.3) .Training was performed with the Adam optimizer( (; = 0.9, B, = 0.999 )and an initial
learning rate of 1 X 1073 .The batch size was set to 64, and early stopping was applied with a patience
of 20 epochs. Five-fold cross-validation was conducted on the training set, and the best model was
evaluated on the independent test set.

4.2. Evaluation Metrics

To evaluate predictive performance, we used multiple regression and classification metrics For
regression, the following metrics were reported

1 A
RMSE = |23, (v — 902,

1 ~
MAE = ﬁﬂllb’i = ¥il, (7
i i-9N(3i-9)

VZivi-y)2, /Zi (37i_3:’)2

where N is the number of samples, y; is the ground-truth affinity, and J; is the predicted affinity.
For classification-oriented evaluation, affinities were binarized at the threshold pAffinity > 7 >7 >7
to indicate strong binders. We then reported AUC,precision, recall, and F1-score to assess model
performance in distinguishing active vs. inactive compounds.

T =

4.3. Experimental Results

We compared our FCNN framework with several baseline methods, including Random Forest
(RF)Support Vector Regression (SVR),and Gradient Boosted Trees (XGBoost).As shown in Table 3,
our method consistently outperformed the baselines across all metrics. In particular, the proposed
FCNN achieved the lowest RMSE and MAE, and the highest Pearson correlation , demonstrating
superior regression accuracy. On the classification task, our method achieved an AUC of
0.92,compared to 0.84 (RF),0.81 (SVR), and 0.86 (XGBoost). These results confirm that
incorporating protein structural features alongside molecular descriptors provides a significant
advantage in affinity prediction.

Table 3: Performance comparison between our FCNN framework and baseline models.| indicates
lower is better; T indicates higher is better.

Method RMSE | MAE | r1 AUC 1
RF 1.32 1.04 0.71 0.84
SVR 1.45 1.12 0.67 0.81
XGBoost 1.28 0.98 0.74 0.86
FCNN (Ours) 1.05 0.82 0.81 0.92

4.4. Ablation Studies

To assess the contribution of different feature components, we conducted ablation experiments.
Three model variants were evaluated: (1) ligand-only model using molecular descriptors (2) protein-
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only model using transporter features, and (3) the full model with both ligand and protein features.
Results are summarized in Table 4.The ligand-only model achieved moderate performance RMSE=
1. 32 = 0.70] ), while the protein-only model performed slightly better (RMSE=1.25, r=0.73 .
The full integrated model achieved the best performance (RMSE = 1.05 =1.05 =1.05 = 0.81),
highlighting the complementary roles of ligand descriptors and protein structural features. This
confirms that integrating both modalities is critical for accurate affinity prediction.

Table 4: Ablation study showing the effect of different feature sets.

Model Variant RMSE | MAE | rt

Ligand-only 1.32 1.08 0.70
Protein-only 1.25 1.00 0.73
Full model (Ligand+Protein) 1.05 0.82 0.81

5. Discussion

The results of our study highlight several important findings. First, the integration of ligand-based
descriptors with protein-derived features clearly improves prediction performance compared with
traditional QSAR or ligand-only baselines. This indicates that protein structural information, even
when derived from computational predictions such as AlphaFold, provides. complementary signals
that are critical for accurately modeling ligand transporter interactions. Second, the consistent
improvements observed across multiple transporters suggest that our framework is not limited to a
specific target, but can generalize to a broader range of neurotransmitter transporters associated with
mood regulation. This generalizability is essential for practical drug discovery pipelines where new
targets are frequently investigated

Nevertheless, some limitations should be noted. The affinity data collected from public resources
may contain inconsistencies due to different assay protocols, which introduces noise into the training
process. In addition, our FCNN architecture captures global feature interactions but does not
explicitly model spatial contacts between ligand atoms and protein residues. More advanced
architectures, such as graph neural networks or attention-based models, could better capture fine-
grained molecular interactions. Furthermore, the current framework focuses solely on static features,
while dynamic aspects of protein-ligand interactions (e.g., conformational. changes observed in
molecular dynamics simulations) remain unmodeled. Addressing these limitations will be important
for future work.

6. Conclusion

In this paper, we presented a fully connected neural network framework that integrates molecular
descriptors and protein structural features for predicting ligand-transporter binding afinity. Our
approach outperforms baseline methods and demonstrates the value of combining ligand and protein
modalities. This framework offers a scalable and effective computational tool. for screening candidate
anxiolytic drugs, with the potential to accelerate discovery and reduce reliance on costly trial-and-
error methods. In future work, we aim to extend this approach to more diverse protein families and
explore hybrid models that incorporate sequence, structure and dynamics for improved affinity
prediction.
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